## Section 12.3

## Odds

Addison
ddison
Wesley
Copyright © 2009 Pearson Education, Inc.

## Odds Against

- Odds against event $\begin{aligned} & =\frac{P(\text { event fails to occur })}{P(\text { event occurs })} \\ & =\frac{P(\text { failure })}{P(\text { success })}\end{aligned}$


## Example: Odds Against

- Example: Find the odds against rolling a 5 on one roll of a die.
- $\quad P(5)=\frac{1}{6} \quad P($ fails to roll a 5$)=\frac{5}{6}$
$\underset{\frac{1}{6}}{\text { Odds against }} \begin{aligned} & \frac{5}{6} \\ & \text { rolling a } 5\end{aligned}=\frac{5}{6} \cdot \frac{6}{1}=\frac{5}{1}$
The odds against rolling a 5 are 5:1.


## Odds in Favor

- Odds in favor of event $=\frac{P(\text { event occurs })}{P(\text { event fails to occur })}$

$$
=\frac{P(\text { success })}{P(\text { failure })}
$$

## Example

- Find the odds in favor of landing on blue in one spin of the spinner.
$P($ blue $)=\frac{3}{8} \quad P($ not blue $)=\frac{5}{8}$
odds in favor $=\frac{\frac{3}{8}}{\frac{5}{8}}=\frac{3}{8} \cdot \frac{8}{5}=\frac{3}{5}$


The odds in favor of spinning blue are 3:5.

## Probability from Odds

- Example: The odds against spinning a blue on a certain spinner are $4: 3$. Find the probability that
- a) a blue is spun.
- b) a blue is not spun.


## Solution

- Since the odds are 4:3 the denominators must be $4+3=7$.
- The probabilities ratios are:

$$
\begin{aligned}
& P(\text { blue })=\frac{3}{7} \\
& P(\text { not blue })=\frac{4}{7}
\end{aligned}
$$

## Section 12.4

## Expected Value (Expectation)

## Expected Value

- $\quad E=P_{1} \cdot A_{1}+P_{2} \cdot A_{2}+P_{3} \cdot A_{3}+\ldots+P_{n} \cdot A_{n}$
- The symbol $P_{1}$ represents the probability that the first event will occur, and $A_{1}$ represents the net amount won or lost if the first event occurs.
- $P_{2}$ is the probability of the second event, and $A_{2}$ is the net amount won or lost if the second event occurs.
- And so on...

Copyright © 2009 Pearson Education, Inc.

## Example

- Teresa is taking a multiple-choice test in which there are four possible answers for each question. The instructor indicated that she will be awarded 3 points for each correct answer and she will lose 1 point for each incorrect answer and no points will be awarded or subtracted for answers left blank.
- If Teresa does not know the correct answer to a question, is it to her advantage or disadvantage to guess?
- If she can eliminate one of the possible choices, is it to her advantage or disadvantage to guess at the answer?


## Solution

- Expected value if Teresa guesses.

$$
\begin{gathered}
P(\text { guesses correctly })=\frac{1}{4} \\
P(\text { guesses incorrectly })=\frac{3}{4} \\
E=\frac{1}{4}(3)+\frac{3}{4}(-1) \\
=\frac{3}{4}-\frac{3}{4}=0
\end{gathered}
$$

- Therefore, over the long run, Theresa will neither gain nor lose points by guessing.


## Solution (continued) —eliminate a choice

- $\quad P($ guesses correctly $)=\frac{1}{3}$

$$
P(\text { guesses incorrectly })=\frac{2}{3}
$$

$$
\begin{aligned}
E & =\frac{1}{3}(3)+\frac{2}{3}(-1) \\
& =1-\frac{2}{3}=\frac{1}{3}
\end{aligned}
$$

- Therefore, over the long run, Theresa will, on average, gain $1 / 3$ point each time she guesses when she can eliminate one choice.


## Example: Winning a Prize

- When Calvin Winters attends a tree farm event, he is given a free ticket for the $\$ 75$ door prize. A total of 150 tickets will be given out. Determine his expectation of winning the door prize.

$$
\begin{aligned}
E & =\frac{1}{150}(75)+\frac{149}{150}(0) \\
& =\frac{1}{2}
\end{aligned}
$$

- Therefore, Calvin's expectation is $\$ 0.50$, or 50 cents.

Copyright © 2009 Pearson Education, Inc.

## Example

- When Calvin Winters attends a tree farm event, he is given the opportunity to purchase a ticket for the $\$ 75$ door prize. The cost of the ticket is $\$ 3$, and 150 tickets will be sold. Determine Calvin's expectation if he purchases one ticket.


## Solution

$$
\begin{aligned}
E & =\frac{1}{150}(72)+\frac{149}{150}(-3) \\
& =\frac{72}{150}-\frac{447}{150} \\
& =-\frac{375}{150} \\
& =-2.50
\end{aligned}
$$

- Calvin's expectation is $-\$ 2.50$ when he purchases one ticket.

Copyright © 2009 Pearson Education, Inc.

## Fair Price

Fair price $=$ expected value + cost to play

## Example

- Suppose you are playing a game in which you spin the pointer shown in the figure, and you are awarded the amount shown under the pointer. If it costs $\$ 10$ to play the game, determine:
- a) the expectation of the person who plays the game.
- b) the fair price to play the game.


Copyright © 2009 Pearson Education, Inc.

## Solution

| Amt. Shown <br> on Wheel | $\mathbf{\$ 2}$ | $\mathbf{\$ 1 0}$ | $\mathbf{\$ 1 5}$ | $\mathbf{\$ 2 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| Probability | $3 / 8$ | $3 / 8$ | $1 / 8$ | $1 / 8$ |
| Amount <br> Won/Lost | $-\$ 8$ | $\$ 0$ | $\$ 5$ | $\$ 10$ |
| $E$ | $=\frac{3}{8}(-\$ 8)+\frac{3}{8}(\$ 0)+\frac{1}{8}(\$ 5)+\frac{1}{8}(\$ 10)$ |  |  |  |
|  | $=\frac{-24}{8}+0+\frac{5}{8}+\frac{10}{8}$ |  |  |  |
|  | $=\frac{-9}{8}=-1.125 \approx-\$ 1.13$ |  |  |  |

## Solution

- Fair price $=$ expectation + cost to play

$$
\begin{aligned}
& =-\$ 1.13+\$ 10 \\
& =\$ 8.87
\end{aligned}
$$

Thus, the fair price is about $\$ 8.87$.

Addison
Wesle
Copyright © 2009 Pearson Education, Inc.

